MenentukanPanjang Garis Tinggi pada Segitiga Garis tinggi sebuah segitiga adalah garis yang melalui sebuah titik sudut segitiga dan tegak lurus pada sisi yang berhadapan dengan titik sudut tersebut. perhatikan gambar garis tinggi berikut, Dalil-dalil yang berlaku pada garis tinggi segitiga yaitu : 1).
MatematikaGEOMETRI Kelas 7 SMPSEGITIGAKeliling dan Luas SegitigaDiketahui segitiga ABC dengan garis tinggi AD seperti gambar 4 cm 3 cm B D C 5 cm Jika sudut BAC = 90, AB = 4 cm, AC = 3 cm, dan BC = 5 cm, tentukan a. luas segitiga ABC; b. panjang AD. Keliling dan Luas SegitigaSEGITIGAGEOMETRIMatematikaRekomendasi video solusi lainnya0336Jika BC=8 cm, AC=5 cm, dan luas segitiga ABC=10 akar3 c...Jika BC=8 cm, AC=5 cm, dan luas segitiga ABC=10 akar3 c...0119C 12cm 20cm D 5cm A 18cm B. Luas segitiga ABC pada gambar...C 12cm 20cm D 5cm A 18cm B. Luas segitiga ABC pada gambar...0147Suatu segitiga ABC diketahui panjang a=5 cm, b=7 cm, dan ...Suatu segitiga ABC diketahui panjang a=5 cm, b=7 cm, dan ...
Diketahuisegitiga ABC dengan garis tinggi AD seperti gambar berikut.A 4 cm 3 cm B D C 5 cm Jika sudut BAC = 90, AB = 4 cm, AC = 3 cm, dan BC = 5 cm, tentukan a. luas segitiga ABC; b. panjang AD. Keliling dan Luas Segitiga; SEGITIGA; GEOMETRI; Matematika
Blog Koma - Sebelumnya telah dibahas mengenai "panjang garis-garis istimewa pada segitiga" yang tanpa disertai dengan contoh soal ataupun pembuktiaanya. Pada artikel Panjang Garis Tinggi pada Segitiga dan Pembuktiannya ini kita akan lebih menekankan lagi contoh-contoh soalnya dan tentu pembuktian rumus-rumus yang digunakan. Menentukan Panjang Garis Tinggi pada Segitiga Garis tinggi sebuah segitiga adalah garis yang melalui sebuah titik sudut segitiga dan tegak lurus pada sisi yang berhadapan dengan titik sudut tersebut. perhatikan gambar garis tinggi berikut, Dalil-dalil yang berlaku pada garis tinggi segitiga yaitu 1. Ketiga garis tinggi berpotongan pada satu titik titik O yang disebut dengan titik tinggi. 2. Pada segitiga siku-siku, garis tinggi ke hipotenusanya sisi terpanjang membagi segitiga siku-siku menjadi dua segitiga yang sebangun dan juga sebangun dengan segitiga awalnya ketiga segitiga yang ada sebangun seperti gambar berikut ini, $\Delta$ABC sebangun dengan $\Delta$ABD sebangun dengan $\Delta$CBD. 3. Menentukan panjang garis tinggi pada segitiga Untuk menentukan panjang garis tinggi, kita gunakan Dalil Proyeksi. Ada dua jenis yaitu *. Dali proyeksi segitiga lancip, Kita proyeksikan garis CA pada garis BC, hasil proyeksinya adalah garis CD seperti gambar berikut. Misalkan panjang $ CD = p \, $ , panjang $ p $ bisa ditentukan dengan rumus $ \, c^2 = a^2 + b^2 - 2ap $ Misalkan panjang $ BD = k \, $ , panjang $ k $ bisa ditentukan dengan rumus $ \, b^2 = a^2 + c^2 - 2ak $ *. Dali proyeksi segitiga tumpul, Kita proyeksikan garis CA pada garis BC, hasil proyeksinya adalah garis CD seperti gambar berikut. Misalkan panjang $ BD = p \, $ , panjang $ p $ bisa ditentukan dengan rumus $ \, c^2 = a^2 + b^2 + 2ap $ Catatan i. Setelah ketemu pajang $ p \, $ , bari kita akan menentukan tinggi segitiganya dengan pythagoras. Artinya kita tidak bisa langsung dapat menentukan tinggi segitiganya, tapi bertahap. ii. Ada cara lain sehingga tinggi segitiga bisa langsung kita temukan tanpa menjari $ p \, $ terlebih dahulu yaitu menggunakan konsep luas segitiga. Menentukan Panjang Garis Tinggi dengan Luas Segitiga *. Luas segitiga Menggunakan rumus Heron. Misalkan diketahui sisi-sisi segitiga yaitu $a, \, b, \, $ dan $ \, c $. $ s = \frac{1}{2}a+b+c $ $ \text{Luas } \Delta = \sqrt{ss-as-bs-c} $. Untuk pembuktian rumus Heron ini, silahkan baca pada "Penerapan Trigonometri pada Segitiga Aturan Sinus, Aturan Cosinus, Luas Segitiga". *. Menentukan panjang garis tinggi, Perhatikan gambar berikut, Garis tingginya adalah garis AF, BD, dan CE. $ \begin{align} AF = t_a & = \frac{2}{a} \sqrt{ss-as-bs-c} \\ BD = t_b & = \frac{2}{b} \sqrt{ss-as-bs-c} \\ CE = t_c & = \frac{2}{c} \sqrt{ss-as-bs-c} \end{align} $ Contoh soal garis tinggi pada segitiga 1. Sebuah segitiga ABC dengan AB = 5 cm, BC = 6 cm, dan AC = 7 cm. AD adalah garis tinggi segitga ABC, tentukan panjang AD dan luas segitiga ABC. Penyelesaian Cara I Menggunakan dalil Proyeksi, *. Menentukan nilai $ p $, $ \begin{align} c^2 & = a^2 + b^2 - 2ap \\ 5^2 & = 6^2 + 7^2 - \\ 25 & = 36 + 49 - 12p \\ 25 & = 36 + 49 - 12p \\ 12p & = 60 \\ p & = 5 \end{align} $ *. Menentukan panjang AD dengan pythagoras segitiga ADC $ \begin{align} AC^2 & = AD^2 + DC^2 \\ 7^2 & = AD^2 + 5^2 \\ 49 & = AD^2 + 25 \\ AD^2 & = 24 \\ AD & = \sqrt{24} = 2\sqrt{6} \end{align} $ Sehingga panjang garis tinggi $ AD = 2 \sqrt{6} \, $ cm. *. Menentukan Luas segitiga ABC. Luas ABC $ = \frac{1}{2}. a . t = \frac{1}{2}.6 . 2 \sqrt{6} = 6 \sqrt{6} $. Jadi, luas segitiga ABC adalah $ \, 6 \sqrt{6} \, $ cm$^2$. Cara II Menggunakan luas segitiga, *. Diketahui $ a = 6, b = 7 , c = 5 $. $ s = \frac{1}{2}a+b+c = \frac{1}{2}6 + 7 + 5 = \frac{1}{2}.18 = 9 $. *. Menentukan panjang AD dengan luas segitiga $ \begin{align} AD = t_a & = \frac{2}{a} \sqrt{ss-as-bs-c} \\ & = \frac{2}{6} \sqrt{99-69-79-5} \\ & = \frac{1}{3} \sqrt{ \\ & = \frac{1}{3} \\ & = 2\sqrt{6} \end{align} $ Sehingga panjang garis tinggi $ AD = 2 \sqrt{6} \, $ cm. *. Luas segitiga menggunakan rumus Heron $ \begin{align} \text{Luas ABC } & = \sqrt{ss-as-bs-c} \\ & = \sqrt{99-69-79-5} \\ & = \sqrt{ \\ & = \\ & = 6 \sqrt{6} \end{align} $ Jadi, luas segitiga ABC adalah $ \, 6 \sqrt{6} \, $ cm$^2$. Bagaimana dengan kedua cara di atas, lebih mudah mana, cara I atau cara II. Cara II rumus Heron akan mudah kalau panjang semua sisi segitiganya berupa bilangan bulat, dan akan sulit jika salah satu panjang sisi segitiganya dalam bentuk akar. Ini artinya mudah atau tidaknya bersifat relatif. 2. Diketahui persegi panjang ABCD dengan AB = 8 cm dan BC = 6 cm. Titik M dan N terletak pada AC sedemikian sehingga DM dan BN tegak lurus pada AC. Tentukan panjang MN? Penyelesaian *. Gambar persegi panjangnya. Segitiga ADC siku-siku di D sehingga dengan pythagoras kita peroleh AC = 10 cm. Garis DM adalah garis tinggi pada segitiga ADC sehingga bisa kita terapkan dalil proyeksi. *. Menentukan panjang AM pada gambar b $ \begin{align} CD^2 & = AD^2 + AC^2 - . AM \\ 8^2 & = 6^2 + 10^2 - 2. 10 . AM \\ 64 & = 36 + 100 - 20. AM \\ AM & = 3,6 \end{align} $ Karena panjang AM = CN, sehingga CN = 3,6 juga. *. Menentukan panjang MN $ \begin{align} MN & = AC - AM + CN \\ & = 10 - 3,6 + 3,6 \\ & = 10 - 7,2 \\ & = 2,8 \end{align} $ Jadi, panjang AM = 2,8 cm. 3. Perhatikan gambar segitiga ABC berikut ini, Diketahui panjang BC = 12 cm, AD = 30 cm , AC = 15 cm. Tentukan panjang garis tinggi BE. Penyelesaian *. Kita gunakan luas segitiga Luas $ = \frac{1}{2}. $ \begin{align} \text{Luas segitiga ABC dengan alas AC} & = \text{Luas segitiga ABC dengan alas BC} \\ \frac{1}{2}. AC . BE & = \frac{1}{2}.BC . AD \\ AC . BE & = BC . AD \\ 15 . BE & = 12 \times 30 \\ BE & = \frac{12 \times 30}{15} \\ BE & = 24 \end{align} $ Jadi, panjang garis tinggi BE = 24 cm. 4. Sebuah segitiga ABC dengan AB = 5 cm, BC = 7 cm, dan AC = 6 cm. Garis tinggi AD dan BE berpotongan di titik O. Tentukan perbandingan panjang AOOD dan perbandingan BO OE. Penyelesaian *. Untuk menjawab soal ini, kita menggunakan garis tinggi dalil proyeksi dan dalil Menelaus. *. Dalil proyeksi untuk garis tinggi AD dan BE. garis tinggi AD $ \begin{align} AC^2 & = AB^2 + BC^2 - 2 . BC . BD \\ 6^2 & = 5^2 + 7^2 - 2 . 7 . BD \\ 36 & = 25 + 49 - 14. BD \\ 36 & = 25 + 49 - 14. BD \\ 14BD & = 38 \\ BD & = \frac{38}{14} = \frac{19}{7} \end{align} $ Sehingga panjang $ DC = 7 - BD = 7 - \frac{19}{7} = \frac{30}{7} $. garis tinggi BE $ \begin{align} BC^2 & = AB^2 + AC^2 - 2 . AC . AE \\ 7^2 & = 5^2 + 6^2 - 2 . 6 . AE \\ 49 & = 25 + 36 - 12. AE \\ AE & = 1 \end{align} $ Sehingga panjang $ CE = 6 - AE = 6 - 1 = 5 $. *. Dalil Menelaus untuk perbandingan garis, Perbandingan AO OD, $ \begin{align} \frac{DO}{AO}. \frac{AE}{EC}. \frac{CB}{DB} & = 1 \\ \frac{DO}{AO}. \frac{1}{5}. \frac{7}{\frac{19}{7}} & = 1 \\ \frac{DO}{AO}. \frac{1}{5}. \frac{49}{19} & = 1 \\ \frac{DO}{AO}. \frac{49}{95} & = 1 \\ \frac{DO}{AO} & = \frac{95}{49} \end{align} $ Sehingga perbandingan AO DO = 49 95. Perbandingan BO OE, $ \begin{align} \frac{EO}{OB}. \frac{BD}{DC}. \frac{CA}{AE} & = 1 \\ \frac{EO}{OB}. \frac{\frac{19}{7}}{\frac{30}{7}}. \frac{6}{1} & = 1 \\ \frac{EO}{OB}. \frac{19}{30}. \frac{6}{1} & = 1 \\ \frac{EO}{OB}. \frac{19}{5} & = 1 \\ \frac{EO}{OB} & = \frac{5}{19} \end{align} $ Sehingga perbandingan BO OE = 19 5. Pembuktian dalil Proyeksi Untuk membuktikan dalil proyeksi, kita cukup menggunakan teorema pythagoras. Perhatikan gambar berikut, *. Dalil proyeksi segitiga lancip. Misalkan panjang $ CD = p , \, $ maka panjang $ BD = a - p $. *. Pada $\Delta$BAD dan $\Delta$CAD masing-masing siku-siku di D sehingga bisa diterapkan pythagoras Segitiga CAD $ AD^2 = b^2 - p^2 \, $ ....persi. Segitiga BAD $ AD^2 = c^2 - a-p^2 \, $ ....persii. Dari persi dan persii, panjang AD sama, sehingga $ \begin{align} c^2 - a-p^2 & = b^2 - p^2 \\ c^2 - a^2 - 2ap + p^2 & = b^2 - p^2 \\ c^2 - a^2 + 2ap - p^2 & = b^2 - p^2 \\ c^2 & = a^2 + b^2 - 2ap \end{align} $ Jadi terbukti persamaan $ c^2 = a^2 + b^2 - 2ap $. *. Dalil proyeksi segitiga tumpul. Misalkan panjang $ BD = p , \, $ maka panjang $ CD = a + p $. *. Pada $\Delta$ADB dan $\Delta$ADC masing-masing siku-siku di D sehingga bisa diterapkan pythagoras Segitiga ADB $ AD^2 = c^2 - p^2 \, $ ....persi. Segitiga ADC $ AD^2 = b^2 - a+p^2 \, $ ....persii. Dari persi dan persii, panjang AD sama, sehingga $ \begin{align} b^2 - a+p^2 & = c^2 - p^2 \\ b^2 - a^2 + 2ap + p^2 & = c^2 - p^2 \\ b^2 - a^2 - 2ap - p^2 & = c^2 - p^2 \\ b^2 & = a^2 + c^2 + 2ap \end{align} $ Jadi terbukti persamaan $ b^2 = a^2 + c^2 + 2ap $. Pembuktian panjang garis tinggi dengan luas segitiga Berdasarkan rumus luas segitiga dengan rumus Heron, $ \text{Luas ABC} = \sqrt{ss-as-bs-c} $ . Perhatikan gambar segitiga berikut. *. Perhatikan segitiga ABC dengan alas $ BC = a \, $ dan tinggi $ AF = t_a $ $ \begin{align} \text{Luas ABC} & = \frac{1}{2}. \text{alas}. \text{tinggi} \\ \sqrt{ss-as-bs-c} & = \frac{1}{2}. a . t_a \\ t_a & = \frac{2}{a} \sqrt{ss-as-bs-c} \end{align} $ *. Perhatikan segitiga ABC dengan alas $ AC = b \, $ dan tinggi $ BD = t_b $ $ \begin{align} \text{Luas ABC} & = \frac{1}{2}. \text{alas}. \text{tinggi} \\ \sqrt{ss-as-bs-c} & = \frac{1}{2}. b . t_b \\ t_b & = \frac{2}{b} \sqrt{ss-as-bs-c} \end{align} $ *. Perhatikan segitiga ABC dengan alas $ AB = c \, $ dan tinggi $ CE = t_c $ $ \begin{align} \text{Luas ABC} & = \frac{1}{2}. \text{alas}. \text{tinggi} \\ \sqrt{ss-as-bs-c} & = \frac{1}{2}. c . t_c \\ t_c & = \frac{2}{c} \sqrt{ss-as-bs-c} \end{align} $ Jadi, sudah terbukti panjang garis tinggi yang diminta.
Limassegitiga T.ABC pada gambar berikut merupakan limas dengan alas segitiga siku-siku sama kaki dengan panjang kaki-kaki segitiganya adalah 10 cm. 😚Hallo adik-adik kali🥇 ini kita akan membahas pelajaran kelas 8, namun sebelum memulai silahkan untuk melihat jawaban dari mata pelajaran yang lainnya seperti .
Pengertian Segitiga Segitiga adalah poligon dengan tiga sisi dan tiga sudut. Sebuah segitiga terbentuk dari tiga buah garis lurus yang bersambungan satu sama lain. Segitiga merupakan salah satu bentuk dasar dalam geometri yang paling Garis Istimewa pada Segitiga Garis itimewa pada segitiga adalah garis lurus yang menghubungkan satu titik sudut atau satu sisi dengan sisi di hadapannya yang berdasarkan aturan tertentu. Jadi garis istimewa dalam sebuah segitiga adalah garis lurus yang membagi segitiga tersebut berdasarkan aturan tertentu.,Jenis-Jenis Garis Istimewa pada Segitiga Ada empat macam garis istimewa pada sebuah segitiga yaitu • Garis bagi • Garis tinggi • Garis berat • Garis sumbuPengertian Garis Bagi Definisi garis bagi dalam sebuah segitiga adalah garis lurus yang menghubungkan satu titik sudut segitiga ke sisi dihadapannya dan membagi sudut tersebut menjadi dua sama besar. Perhatikan segitiga ABC pada gambar. Garis AD adalah garis bagi. Garis AD menghubungkan titik sudut A dengan sisi BC pada titik D sedemikian hingga sudut BAD sama dengan sudut DAC yaitu setengah dari sudut Garis Tinggi Definisi garis tinggi dalam sebuah segitiga adalah garis lurus yang menghubungkan satu titik sudut ke sisi dihadapannya secara tegak lurus membentuk sudut siku-siku. Perhatikan segitiga HIJ pada gambar. Garis HK adalah garis tinggi. Garis HK menghubungkan titik sudut H dengan sisi IJ pada titik K sedemikian hingga sudut HKI dan sudut HKJ tepat 90 derajat sudut siku-siku/sudut tegak lurus.Pengertian Garis Berat Definisi garis berat dalam sebuah segitiga adalah garis lurus yang menghubungkan satu titik sudut ke sisi di hadapannya dan membagi sisi tersebut menjadi dua bagian sama panjang. Perhatikan segitiga PQR pada gambar. Garis PS adalah garis berat. Garis PS menghubungkan titik sudut P dengan sisi QR pada titik S sedemikian hingga panjang sisi QS sama dengan panjang sisi SR yaitu setengah dari panjang sisi Garis Sumbu Definisi garis sumbu dalam sebuah segitiga adalah garis lurus yang menghubungkan satu titik pada segitiga dengan sisi dihadapannya dan membagi sisi tersebut menjadi dua bagian sama panjang secara tegak lurus. Perhatikan segitiga UVW pada gambar. Garis XY adalah garis sumbu. Garis XY menghubungkan titik X pada sisi segitiga dengan sisi VW pada titik Y sedemikian hingga panjang sisi VY sama dengan panjang sisi YW dan sudut XYV juga sudut XYW tepat 90 derajat sudut siku-siku/sudut tegak lurus.
mencarialas dan tinggi segitiga sebagai berikut a l t x 2 t l a x 2 contoh 1 diketahui sebuah segitiga dengan luas 90 atau siku siku seperti yang bisa kamu lihat pada gambar di atas pada gambar diatas pada titik c sudut siki siku di depannya langkah langkah membuat garis tinggi diketahui segitiga abc jika ingin membuat garis tinggi di
Kelas 9 SMPKESEBANGUNAN DAN KONGRUENSISegitiga-segitiga kongruenPada gambar segitiga ABC di bawah, diketahui bahwa AD adalah garis berat. Jika AD diperpanjang dengan AD=DE, maka di antara pernyataan berikut ini yang benar adalah ....A. segitiga ACD kongruen segitiga ABDB. segitiga CAD kongruen segitiga BEDC. segitiga ABD kongruen segitiga EBDD. segitiga ABC kongruen segitiga ABESegitiga-segitiga kongruenKESEBANGUNAN DAN KONGRUENSIGEOMETRIMatematikaRekomendasi video solusi lainnya0201Segitiga ABC siku-siku di B kongruen dengan segitiga ...0331Perhatikan gambar trapezium ABCD dan PQRS yang kongruen d...0316Perhatikan segitiga berikut ini yang kon...Teks videopada soal disajikan gambar dari segitiga ABC diketahui bahwa garis ad adalah garis berat kita ingat garis berat adalah garis yang ditarik dari suatu titik sudut ke Sisi di hadapannya menjadi dua bagian sama panjang, maka kita peroleh di mana panjang dari BD = CD kemudian Jika garis ad diperpanjang dengan AB = De yang ditanya adalah pernyataan yang benar adalah kita lihat pada gambar di mana dari ini berpotongan di titik D ke garis BC kita ingat jika ada dua garis yang saling berpotongan maka ada sudut yang sama besar yaituBertolak belakang di mana sudut yang bertolak belakang tersebut yaitu besar sudut a b c ini sama dengan besar sudut b a d e, yaitu sudut bertolak belakang dan besar sudut di bawah ini sama dengan sudut C D E itu sudut bertolak belakang kemudian kita lihat di Optik jawaban dimana pernyataan yang benar dalam bentuk buah segitiga yang kongruen maka jika ada soal seperti ini kita ambil satu syarat yang menyebabkan luas segitiga itu kongruen syaratnya itu ada tiga dan harus memenuhi salah satu kita ingat gimana untuk sisi-sisi yang bersesuaian?sama panjang atau dua sudut yang bersesuaian sama besar dan satu sisi yang bersesuaian sama panjang atau dua sisi yang bersesuaian yang diapit oleh kedua sisi tersebut sama besar maka kita akan menggunakan yang ketiga salah satu sudutnya di mana sudut tersebut tidak aktif oleh dua sisi ini sama besar sudut tersebut adalah sudut yang saling bertolak belakang kemudian kita lihat di opsi jawaban untuk opsi segitiga ABC dan segitiga ABD tidur yang saling bertolak belakang untuk salah Kemudian untuk opsi B gimana segitigaDan segitiga B kita lihat ada sudut yang saling bertolak belakang maka untuk kita simpan terlebih dahulu nanti akan kita buktikan Apakah benar ini kongruen Kemudian untuk sisi segitiga ABD dan segitiga BCD di mana tidak ada sudut yang saling bertolak belakang maka jelas untuk opsi ini salah Kemudian untuk segitiga ABC dan segitiga a b di mana tidak ada sudut yang saling bertolak belakang untuk ini jelas salah maka kita lihat segitiga c dan segitiga d. B kemudian kita tarik garisDari titik B ke titik di mana kita peroleh bahwa besar sama dengan besar sudut B itu sudut bertolak belakang kemudian panjang dari adik sama dengan DM kemudian panjang CD ini = B maaf ini jelas merupakan dua segitiga yang kongruen karena memenuhi syarat yang ketiga bisa kita tulis yaitu segitiga ini kongruen dengan segitiga b. Maka jawabannya adalah opsi sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Diketahuisegitiga ABC seperti pada gambar berikut. Tentukan nilai a. 2 cm 45 2a cm 30. Aturan Sinus; Trigonometri; TRIGONOMETRI; Persamaan Dan Pertidaksamaan Linear Satu Variabel Wajib; Relasi Dan Fungsi; Persamaan Garis Lurus; Sistem Persamaan Linear Dua Variabel (Spldv) 7. SMP MatematikaGEOMETRI Kelas 9 SMPKESEBANGUNAN DAN KONGRUENSISegitiga-segitiga sebangunDiketahui segitiga ABC siku-siku di A , ditarik garis tinggi AD .a. Tunjukkan bahwa segitiga ABD sebangun dengan segitiga ADC .b. Tunjukkan bahwa segitiga AB D sebangun dengan segitiga ABC .c. Jika AB/BC=k , tentukan nilai dari BD/AB dan AD/AC .d. Jika AC/BC=1 , tentukan nilai dari AD/AB dan CD/AC .e. Jika AC/AB=m , tentukan nilai dari AD/B D dan CD/AD .Segitiga-segitiga sebangunKESEBANGUNAN DAN KONGRUENSIGEOMETRIMatematikaRekomendasi video solusi lainnya0134Perhatikan gambar berikut. 10 cm A B F C D 4cm EDiketahui...Perhatikan gambar berikut. 10 cm A B F C D 4cm EDiketahui...0340Perikan gambar berikut! Panjang BC=CD=8 cm dan DE=9 cm...Perikan gambar berikut! Panjang BC=CD=8 cm dan DE=9 cm... Sebuahprisma segitiga sama sisi ABC.DEF dengan panjang BE = 20 cm dan AB = 10 cm, tentukan jarak dari titik F ke garis AB! Penyelesaian: Jika soal di atas diilustrasikan ke dalam bentuk gambar, akan tampak seperti gambar di bawah ini. Cara yang paling mudah mengerjakan soal di atas adalah dengan menggunakan Teorema Pytagoras.

Contoh Soal 3. Diketahui segitiga ABC dengan garis tinggi AD seperti gambar berikut. Jika ∠BAC = 90°, AB = 4 cm, AC = 3 cm, dan BC = 5 cm, tentukan a. luas segitiga ABC; b. panjang AD. Jawab a. Karena ∠BAC = 90° salah satu kaki sudutnya bisa dijadikan tinggi atau alas, maka = ½ x alas x tinggi = ½ x AB x AC = ½ x 4 cm x 3 cm = 6 cm2 b. panjang AD dapat dicari dengan konsep luas segitiga yaitu = ½ x alas x tinggi = ½ x BC x AD 6 cm2 = ½ x 5 cm x AD AD = 6 cm2/2,5 cm AD = 2,4 cm Soal 5. Perhatikan gambar berikut. Hitunglah a. luas segitiga ABD; b. luas segitiga BCD; c. luas bangun ABCD. Jawab a. Luas segitiga ABD dapat dicari dengan persamaan = ½ x alas x tinggi = ½ x AB x DE = ½ x 14 cm x 9 cm = 63 cm2 b. Luas segitiga BCD dapat dicari dengan persamaan = ½ x alas x tinggi = ½ x CD x DE = ½ x 24 cm x 9 cm = 108 cm2 c. Luas bangun ABCD dapat dicari dengan persamaan = + = 63 cm2 + 108 cm2 = 171 cm2 Contoh Soal dan Pembahasan Segitiga Lengkap Contoh soal 1 Perhatikan gambar berikut! Tentukan nilai x dan besar sudut A pada segitiga diatas ! Pembahasan 180º = ∠A+∠B+∠C 180º = 3x + 10° + x + 15° + 35° 180º = 4x + 60° 4x=180°-60° 4x = 120° x = 120°/4 x = 30° Besar ∠A = 3x + 10° ∠A = 330° + 10° ∠A = 90° + 10° = 100° Contoh soal 2 Perhatikan gambar berikut! Tentukan luas dari a. ΔACD b. ΔBCD c. ΔABD Pembahasan a. ΔACD Perhatikan gambar dibawah, daerah yang berwarna kuning adalah segitiga ACD Berdasarkan gambar diketahui Panjang alasnya = AC = 4 cm Tingginya = AD = 10 cm L ΔACD = ½ × AC × AD L ΔACD = ½ × 4 × 10 L ΔACD = 20 cm² b. ΔBCD Daerah yang berwarna biru pada gambar diatas adalah segitiga BCD Berdasarkan gambar diketahui Panjang alasnya = BC = 4 cm Tingginya = AD = 10 cm tingginya tetap AD, karena tinggi segitiga adalah garis yang tegak lurus dengan alasnya L ΔBCD = ½ × BC × AD L ΔBCD = ½ × 8 × 10 L ΔBCD = 40 cm² c. ΔABD Daerah yang berwarna hijau pada gambar dibawah adalah segitiga ABD Berdasarkan gambar diketahui Panjang alasnya = AB = 8 + 4 = 12 cm Tingginya = AD = 10 cm L ΔBCD = ½ × AB × AD L ΔBCD = ½ × 12 × 10 L ΔBCD = 60 cm² Contoh soal 3 Tentukan panjang CD dan luas segitiga ABC pada gambar berikut! Pembahasan a. Panjang CD menggunakan rumus Phytagoras b. Luas ΔABC Panjang alasnya = AB = 12 cm Tinggi = CD = 10 cm L ΔBCD = ½ × AB × CD L ΔBCD = ½ × 12 × 12 L ΔBCD = 72 cm² Contoh soal 4 Hitunglah panjang EG pada gambar berikut! Pembahasan Agar dapat mengitung panjang EG terlebih dahulu kita harus mengetahui panjang EF. Panjang EF pada ΔDEF dapat dicari dengan teorema Phytagoras Panjang EG pada ΔEFG Contoh soal 5 Sebuah segitiga sama kaki mempunyai keliling 98 cm, jika panjang alasnya 24 cm, hitung luas segitiga tersebut! Pembahasan Diketahui Panjang alas = 24 cm keliling = 98 cm keliling = sisi1 + sisi2 + alas 98 cm = sisi1 + sisi2 + 24 cm Sisi1 + sisi2 = 98 – 24 = 74 cm ingat, dalam segitiga sama kaki sisi1 = sisi2 Maka sisi 1 = sisi 2 = 74/2 = 37 cm. Untuk mencari luas segitiga, kita harus mengetahui tinggi dari segitiga tersebut. Tinggi segitiga dapat dicari menggunakan rumus Phytagoras dengan sisi 1 atau sisi 2 sebagai sisi miring 37 cm, dan alasnya yaitu ½ alas segitiga tersebut 24/2 = 12 cm tinggi segitiga tersebut adalah 35cm Sehingga luasnya adalah L = L = ½×24×35 L = 420 cm² Contoh soal 6 Tentukan jari-jari lingkaran dalam segitiga dari gambar berikut! Diketahui AC tegak lurus dengan AB. Pembahasan s = ½ keliling Δ = ½7+24+25 = 28 Luas segitiga L = ½ × AB × AC L = ½ × 7 × 24 = 84 cm² Jari-jari lingkaran dalam segitiga r = L/s =8 4/28 = 3 cm Contoh soal 7 Perhatikan gambar berikut! Tentukan jari-jari lingkaran luar segitiga dari gambar diatas! Pembahasan s = ½ keliling Δ = ½12+16+20 = 24 Luas segitiga segitiga tersebut adalah segitiga sembarang, karena tingginya tidak diketahui maka kita hitung luasnya dengan teorema Heron Jari-jari lingkaran luar segitiga Contoh soal 8 Berdasarkan gambar pada contoh soal 7, hitunglah selisih keliling segitiga dan keliling lingkaran tersebut! Pembahasan Keliling Δ = s1 + s2 + s3 = 12 + 16 + 20 = 48 cm Keliling ⨀ = 2 π r = 2 × 3,14 × 9,62 = 60,41 cm Selisih = Keliling ⨀ – Keliling Δ = 60,41 – 48 = 12,41 cm

veJvlrc. 228 157 300 63 345 89 13 88 359

diketahui segitiga abc dengan garis tinggi ad seperti gambar berikut